vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 mod289(vec4 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 permute(vec4 x) { return mod289(((x * 34.0) + 10.0) * x); } vec4 taylorInvSqrt(vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; } float snoise(vec3 v) { const vec2 C = vec2(1.0 / 6.0, 1.0 / 3.0); const vec4 D = vec4(0.0, 0.5, 1.0, 2.0); // First corner vec3 i = floor(v + dot(v, C.yyy)); vec3 x0 = v - i + dot(i, C.xxx); // Other corners vec3 g = step(x0.yzx, x0.xyz); vec3 l = 1.0 - g; vec3 i1 = min(g.xyz, l.zxy); vec3 i2 = max(g.xyz, l.zxy); // x0 = x0 - 0.0 + 0.0 * C.xxx; // x1 = x0 - i1 + 1.0 * C.xxx; // x2 = x0 - i2 + 2.0 * C.xxx; // x3 = x0 - 1.0 + 3.0 * C.xxx; vec3 x1 = x0 - i1 + C.xxx; vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y // Permutations i = mod289(i); vec4 p = permute(permute(permute(i.z + vec4(0.0, i1.z, i2.z, 1.0)) + i.y + vec4(0.0, i1.y, i2.y, 1.0)) + i.x + vec4(0.0, i1.x, i2.x, 1.0)); // Gradients: 7x7 points over a square, mapped onto an octahedron. // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) float n_ = 0.142857142857; // 1.0/7.0 vec3 ns = n_ * D.wyz - D.xzx; vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7) vec4 x_ = floor(j * ns.z); vec4 y_ = floor(j - 7.0 * x_); // mod(j,N) vec4 x = x_ * ns.x + ns.yyyy; vec4 y = y_ * ns.x + ns.yyyy; vec4 h = 1.0 - abs(x) - abs(y); vec4 b0 = vec4(x.xy, y.xy); vec4 b1 = vec4(x.zw, y.zw); // vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0; // vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0; vec4 s0 = floor(b0) * 2.0 + 1.0; vec4 s1 = floor(b1) * 2.0 + 1.0; vec4 sh = -step(h, vec4(0.0)); vec4 a0 = b0.xzyw + s0.xzyw * sh.xxyy; vec4 a1 = b1.xzyw + s1.xzyw * sh.zzww; vec3 p0 = vec3(a0.xy, h.x); vec3 p1 = vec3(a0.zw, h.y); vec3 p2 = vec3(a1.xy, h.z); vec3 p3 = vec3(a1.zw, h.w); // Normalise gradients vec4 norm = taylorInvSqrt(vec4(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; // Mix final noise value vec4 m = max(0.5 - vec4(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), 0.0); m = m * m; return 105.0 * dot(m * m, vec4(dot(p0, x0), dot(p1, x1), dot(p2, x2), dot(p3, x3))); } float noise2D(vec2 uv) { uvec2 pos = uvec2(floor(uv * 1000.)); return float((pos.x * 68657387u ^ pos.y * 361524851u + pos.x) % 890129u) * (1.0 / 890128.0); } float roundRectSDF(vec2 center, vec2 size, float radius) { return length(max(abs(center) - size + radius, 0.)) - radius; } void mainImage(out vec4 fragColor, in vec2 fragCoord) { vec2 uv = fragCoord / iResolution.xy, sd = vec2(2.), sdh = vec2(1.); vec4 ghosttyCol = texture(iChannel0, uv); float ratio = iResolution.y / iResolution.x, fw = max(fwidth(uv.x), fwidth(uv.y)); vec2 puv = floor(uv * vec2(60., 60. * ratio)) / 60.; puv += (smoothstep(0., 0.7, noise2D(puv)) - 0.5) * 0.05 - vec2(0., iTime * 0.08); uv = fract(vec2(uv.x, uv.y * ratio) * 10.); float d = roundRectSDF((sd + 0.01) * (uv - .5), sdh, 0.075), d2 = roundRectSDF((sd + 0.065) * (fract(uv * 6.) - .5), sdh, 0.2), noiseTime = iTime * 0.03, noise = snoise(vec3(puv, noiseTime)); noise += snoise(vec3(puv * 1.1, noiseTime + 0.5)) + .1; noise += snoise(vec3(puv * 2., noiseTime + 0.8)); noise = pow(noise, 2.); vec3 col1 = vec3(0.), col2 = vec3(0.), col3 = vec3(0.07898), col4 = vec3(0.089184), fcol = mix(mix(mix(col1, col3, smoothstep(0.0, 0.3, noise)), col2, smoothstep(0.0, 0.5, noise)), col4, smoothstep(0.0, 1.0, noise)); fragColor = vec4( ghosttyCol.rgb + mix(col4, fcol, smoothstep(fw, -fw, d) * smoothstep(fw, -fw, d2)), ghosttyCol.a); }