Delete python_symb directory

This commit is contained in:
Crizomb 2023-08-02 00:37:52 +02:00 committed by GitHub
parent cc343851bf
commit a7461088cd
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
7 changed files with 0 additions and 306 deletions

View file

@ -1,13 +0,0 @@
from __future__ import annotations
from typing import Union, List, Tuple, Optional, Dict, Callable
from tree import Tree
from operator import Add, Mul, Neg, Parenthesis
class Expr(Tree):
def __init__(self, value, children=None):
super().__init__(value, children)

View file

@ -1,132 +0,0 @@
from __future__ import annotations
from typing import Iterable, Generator
from tools import gcd
class Fractions:
"""
Should represent a fraction not a division
"""
__slots__ = ['num', 'den']
__match_args__ = ("num", "den")
#todo check if num and den are part of a domain, so a/b as a meaning a gcd work well
#todo implement __iadd__ etc... if performance needed
def __init__(self, *args):
match args:
case num, den:
self.num = num
self.den = den
case x, :
self.num = x
self.den = 1
def __repr__(self):
return f'Fractions({self.num}, {self.den})'
def simplify_gcd(self):
"""Simplify fraction by diving num and den by their gcd
return None"""
match self.num, self.den:
case int(num), int(den):
gcd_ = gcd(num, den)
self.num //= gcd_
self.den //= gcd_
# can be completed with others objects that support gcd like polynomials etc...
def simplify_to_num(self):
"""from frac(a, 1) return a."""
if self.den == 1:
return self.num
def simplify_nested(self, rec=True):
"""simplify nested fractions.
Fractions(1, Fractions(1, Fractions(1, Fractions(1, 2)))) -> Fractions(2, 1)
For one simplification step put rec=False
return None"""
def aux(fract):
match fract:
case Fractions(Fractions(a, b), Fractions(c, d)):
fract.num = a * d
fract.den = b * c
case Fractions(num, Fractions(a, b)):
fract.num = num * b
fract.den = a
case Fractions(Fractions(a, b), den):
fract.num = a
fract.den = b * den
if rec:
num, den = self.num, self.den
if isinstance(num, Fractions) or isinstance(den, Fractions):
aux(fract)
aux(self)
def simplify_all_(self):
self.simplify_gcd()
self.simplify_nested()
res = self.simplify_to_num()
if res:
return res
return self
def __add__(self, other):
match other:
case int(x):
return Fractions(self.num + self.den*x, self.den)
case Fractions(num, den):
result = Fractions(self.num*den + num*self.den, self.den*den)
return result
return ValueError
def __radd__(self, other):
return other + self
def __neg__(self):
return Fractions(-self.num, self.den)
def __mul__(self, other):
match other:
case int(x):
return Fractions(self.num*x, self.den)
case Fractions(num, den):
result = Fractions(self.num*num, self.den*den)
return result
return ValueError
def __rmul__(self, other):
return self*other
def __truediv__(self, other):
match other:
case int(x):
return Fractions(self.num, self.den*x)
case Fractions(num, den):
return Fractions(self.num*den, self.den*num)
def __rtruediv__(self, other):
res = self/other
return Fractions(res.den, res.num)
if __name__ == "__main__":
a = Fractions(1, 2)
a += 1
print(a)

View file

@ -1,3 +0,0 @@
"""
Python int is already an arbitrary precision integer, so we don't need to implement it.
"""

View file

@ -1,56 +0,0 @@
from __future__ import annotations
from typing import Dict, Callable
class Operator:
__slots__ = 'name', 'precedence', 'call'
def __init__(self, name: str, precedence: int, call: Callable):
self.name = name
self.precedence = precedence
self.call = call
class UnaryOperator(Operator):
__slots__ = 'name', 'precedence'
def __init__(self, name: str, precedence: int, call: Callable):
super().__init__(name, precedence, call)
def __call__(self, expr):
return self.call(expr)
class BinProperties:
__slots__ = 'associativity', 'commutativity', 'left_distributivity', 'right_distributivity'
def __init__(self, associativity: bool, commutativity: True,
left_distributivity: Dict[str, bool], right_distributivity: Dict[str, bool]):
self.associativity = associativity
self.commutativity = commutativity
self.left_distributivity = left_distributivity
self.right_distributivity = right_distributivity
class BinOperator(Operator):
__slots__ = 'name', 'precedence', 'properties'
def __init__(self, name: str, precedence: int, properties: BinProperties, call: Callable):
super().__init__(name, precedence, call)
self.properties = properties
def __call__(self, left, right):
return self.call(left, right)
AddProperties = BinProperties(True, True, {'*': True}, {'*': True})
Add = BinOperator('+', 1, AddProperties, lambda x, y: x + y)
MulProperties = BinProperties(True, True, {'+': True}, {'+': True})
Mul = BinOperator('*', 2, MulProperties, lambda x, y: x * y)
Neg = UnaryOperator('-', -1, lambda x: -x)
Parenthesis = UnaryOperator('()', 0, lambda x: x)

View file

@ -1,8 +0,0 @@
from __future__ import annotations
class Symbols:
__slots__ = 'name'
def __init__(self, name):
self.name = name

View file

@ -1,14 +0,0 @@
from __future__ import annotations
from typing import *
def gcd(a, b):
if b > a:
return gcd(b, a)
if b == 0:
return a
return gcd(b, a % b)

View file

@ -1,80 +0,0 @@
from __future__ import annotations
from typing import Iterable, Generator
from collections import deque
class Tree:
"""
Ultra generic Test class. Can be used to represent any Test structure.
value : value of the node. Can be a binary operator like "+", a ternary operator like "if", a number etc...
depth_first_order : the default order of the node in the depth first traversal. Used to implement the depth_first method.
0 is pre-order, 1 is in-order (for binary Test), -1 is post-order.
for instance to write "a ? b : c" you need to write Tree("?", [Tree("a"), Tree("b"), Tree("c")])
and set the depth_first_order of the "?" node to 1.
children : the children of the node. Can be empty.
"""
__slots__ = ['value', 'children', 'depth_first_order']
def __init__(self, value, children: Iterable[Tree] = None, depth_first_order: int = 0):
self.value = value
self.depth_first_order = depth_first_order
self.children = children if children else []
def __repr__(self) -> str:
return f'Tree({self.value}, {self.children})'
def height(self) -> int:
return 1 + max((child.height() for child in self.children), default=0)
def size(self) -> int:
return 1 + sum(child.size() for child in self.children)
def breadth_first(self) -> Generator[Tree]:
queue = deque([self])
while queue:
poped = queue.popleft()
for child in poped.children:
queue.append(child)
yield poped
def depth_first_default(self) -> Generator[Tree]:
def aux(tree):
n = len(tree.children)
if not tree.children:
yield tree
for i, child in enumerate(tree.children):
if i == tree.depth_first_order:
yield tree
yield from aux(child)
if tree.depth_first_order == -1:
yield tree
yield from aux(self)
def depth_first_pre_order(self) -> Generator[Tree]:
def aux(tree):
yield tree
for child in tree.children:
yield from aux(child)
yield from aux(self)
def depth_first_post_order(self) -> Generator[Tree]:
def aux(tree):
for child in tree.children:
yield from aux(child)
yield tree
yield from aux(self)