package main import ( "math" ) type Vector3 struct { X, Y, Z float64 } func (u Vector3) Add(v Vector3) Vector3 { return Vector3{u.X + v.X, u.Y + v.Y, u.Z + v.Z} } func (u Vector3) Neg() Vector3 { return Vector3{-u.X, -u.Y, -u.Z} } func (u Vector3) Sub(v Vector3) Vector3 { return u.Add(v.Neg()) } func (u Vector3) Scale(a float64) Vector3 { return Vector3{a * u.X, a * u.Y, a * u.Z} } func (u Vector3) Dot(v Vector3) float64 { return u.X*v.X + u.Y*v.Y + u.Z*v.Z } func (u Vector3) Cross(v Vector3) Vector3 { return Vector3{u.Y*v.Z - u.Z*v.Y, u.Z*v.X - u.X*v.Z, u.X*v.Y - u.Y*v.X} } func (u Vector3) LengthSquared() float64 { return u.Dot(u) } func (u Vector3) Length() float64 { return math.Sqrt(u.LengthSquared()) } func (u Vector3) Normalized() Vector3 { return u.Scale(1.0 / u.Length()) } func (u Vector3) Round() Vector3 { round := math.Round return Vector3{round(u.X), round(u.Y), round(u.Z)} } // i incident, n normal. Both vector should be normalized func Reflect(i Vector3, n Vector3) Vector3 { y := i.Dot(n) return i.Add(n.Scale(2 * y)) } // Todo : Refract // Rodrigues' rotation formula. rotVector should be normalized func rotate(u Vector3, rotVector Vector3, angle float64) Vector3 { cos, sin := math.Cos(angle), math.Sin(angle) vec1 := u.Scale(cos) vec2 := rotVector.Cross(u).Scale(sin) vec3 := rotVector.Scale(rotVector.Dot(u) * (1 - cos)) return vec1.Add(vec2).Add(vec3) } func (v Vector3) Unpack() (float64, float64, float64) { return v.X, v.Y, v.Z }