* add conversion from pdf to latex-like (.mmd) format with nougat

* change vector_db_manager.py to handle .mmd
* add "conversion" tab
* add math mode checkbox in maintab
This commit is contained in:
Crizomb 2024-04-18 08:00:03 +02:00
parent 356f72fedc
commit 11b92baaa8
17 changed files with 247 additions and 33 deletions

View file

@ -17,28 +17,32 @@ class InferenceInstance:
self.nb_chunks_retrieved = nb_chunks_retrieved
def get_next_token(self, input_user: str, doc_name: str) -> Iterator[Dict[str, str]]:
is_pdf = doc_name.endswith(".pdf")
print(f"doc_name: {doc_name}")
new_assistant_message = {"role": "assistant", "content": ""}
search_results = self._get_search_results(input_user, doc_name)
print(f"search results: {search_results}")
pages = self._update_history(input_user, search_results)
pages = self._update_history(input_user, search_results, is_pdf)
pages_info = f"pages used : p" + " p".join(pages)
print(f"history: {self.history}")
completion = self._get_completion()
for chunk in completion:
new_assistant_message["content"] += chunk.choices[0].delta.content
yield pages_info + " " + new_assistant_message["content"]
if chunk.choices[0].delta.content:
new_assistant_message["content"] += chunk.choices[0].delta.content
yield pages_info + "\n\n " + new_assistant_message["content"]
def _get_search_results(self, input_user: str, doc_name: str):
print(f"input_user: {input_user}")
vector_db = self.vector_db_manager.get_chroma(doc_name)
return vector_db.similarity_search(input_user, k=4)
def _update_history(self, input_user: str, search_results):
def _update_history(self, input_user: str, search_results, is_pdf):
some_context = ""
pages = []
for result in search_results:
pages.append(str(result.metadata['page']))
if is_pdf:
pages.append(str(result.metadata['page']))
some_context += result.page_content + "\n\n"
self.history.append({"role": "system", "content": f"relevant content for user question {some_context}"})
self.history.append({"role": "user", "content": input_user})

16
backend/pdf_to_mmd.py Normal file
View file

@ -0,0 +1,16 @@
import subprocess
def pdf_to_mmd(path_input: str):
"""
Convert a PDF file to MMD format using the Nougat library
https://github.com/facebookresearch/nougat
stream stderr to the front end
"""
output_dir = "../documents/mmds"
command = ['nougat', path_input, "-o", output_dir]
subprocess.run(command)

View file

@ -14,7 +14,6 @@ class VectorDbManager:
self.db_directory = db_directory
self.chunk_size = chunk_size
def create_vector_store_from_pdf(self, pdf_path):
"""
create a chroma vector store from a pdf file path
@ -26,7 +25,7 @@ class VectorDbManager:
"""
pdf_path = Path(pdf_path)
pdf_name = pdf_path.name
vector_directory = self.db_directory/self.embedding_name/pdf_name
vector_directory = self.db_directory / self.embedding_name / pdf_name
if os.path.isdir(vector_directory):
print(f"{vector_directory} found, not recreating a vector store")
@ -49,7 +48,7 @@ class VectorDbManager:
docs = text_splitter.split_documents(docs)
vectorstore = Chroma.from_documents(docs, self.embedding_function, persist_directory=vector_directory)
print("vector store created")
print("pdf vector store created")
print(vectorstore)
def create_vector_store_from_latex(self, latex_path: Path):
@ -62,7 +61,7 @@ class VectorDbManager:
:return:
"""
doc_name = latex_path.name
vector_directory = self.db_directory/self.embedding_name/doc_name
vector_directory = self.db_directory / self.embedding_name / doc_name
if os.path.isdir(vector_directory):
print(f"{vector_directory} found, not recreating a vector store")
@ -71,10 +70,13 @@ class VectorDbManager:
print(f"creating vector store for {vector_directory}")
with open(latex_path, mode="r") as file:
text_splitter = RecursiveCharacterTextSplitter(chunk_size=self.chunk_size, chunk_overlap=100)
docs = text_splitter.split_document(file.read())
text_splitter = RecursiveCharacterTextSplitter.from_language(Language.MARKDOWN, chunk_size=self.chunk_size, chunk_overlap=64)
texts = text_splitter.split_text(file.read())
vectorstore = Chroma.from_documents(docs, self.embedding_function, persist_directory=vector_directory)
print(texts)
vectorstore = Chroma.from_texts(texts, self.embedding_function, persist_directory=vector_directory)
print("latex vector store created")
print(vectorstore)
def get_chroma(self, doc_name):
"""
@ -83,6 +85,5 @@ class VectorDbManager:
:param doc_name:
:return:
"""
vector_directory = self.db_directory/self.embedding_name/doc_name
vector_directory = self.db_directory / self.embedding_name / doc_name
return Chroma(persist_directory=vector_directory, embedding_function=self.embedding_function)