from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings import torch # dict : huggingface url -> max token length (will be chunk size) MODELS_DICT = {"intfloat/multilingual-e5-large": 512, "intfloat/multilingual-e5-large-instruct": 512} def get_embedding_model(name: str): if name in MODELS_DICT: return HuggingFaceEmbeddings(model_name=name, model_kwargs={'device': 'cuda'} if torch.cuda.is_available() else {}) else: raise ValueError(f"Model {name} not found in the list of available models")