from:
N.J., Smelter, & P.B., Baltes (Eds.) (2001).
Encyclopedia of the Social and Behavioral Sciences.
London: Elsevier Science.

Article Title: Linear Algebra for Neural Networks

By: Hervé Abdi

Author Address: Hervé Abdi, School of Human Development, MS: Gr.4.1,
The University of Texas at Dallas, Richardson, TX 750833-0688, USA

Phone: 972 883 2065, fax: 972 883 2491 Date: June 1, 2001

E-mail: herve@utdallas.edu

Abstract

Neural networks are quantitative models which learn to associate input and
output patterns adaptively with the use of learning algorithms. We expose four
main concepts from linear algebra which are essential for analyzing these models:
1) the projection of a vector, 2) the eigen and singular value decomposition,
3) the gradient vector and Hessian matrix of a vector function, and 4) the
Taylor expansion of a vector function. We illustrate these concepts by the
analysis of the Hebbian and Widrow-Hoff rules and some basic neural network
architectures (i.e., the linear autoassociator, the linear heteroassociator, and
the error backpropagation network). We show also that neural networks are
equivalent to iterative versions of standard statistical and optimization models
such as multiple regression analysis and principal component analysis.

1 Introduction

Linear algebra is particularly well suited to analyze the class of neural networks
called associators. These quantitative models learn to associate input and out-

put patterns adaptively with the use of learning algorithms. When the set of
input patterns is different from the set of output patterns, the models are called
heteroassociators. When input patterns and output patterns are the same, the
models are called autoassociators. Associators comsist of layers of elementary
units called neurons. Information flows from the first layer (the input layer), to
the last one (the output layer). Some architectures may include intermediate
layers (the hidden layers). Typically neurons from a given layer are connected
to the neurons of another layer. Linear algebra operations describe the trans-
formations of the information as it flows from one layer to another one.

2 Prerequisite notions and notations

Vectors are represented by lower case boldface letters (e.g., @), matrices by
upper case boldface letters (e.g., X). The following elementary notions are
supposed to be known (see Abdi, Valentin & Edelman, 1999, for a neural net-
work approach): the transpose operation, (e.g., @'), the norm of a vector (e.g.,
|lz||), the scalar product (e.g., 2 w) and the product of two matrices (e.g.,
AB). We will use also the elementwise or Hadamar product (e.g., A ® B).

3 Projection

3.1 Cosine between two vectors

The cosine of vectors and y is the cosine of the angle made by the origin of
the space and the points defined by the coordinates of the vectors. Thus,

'y

el @

cos(z, y) =

The cosine reflects the similarity between vectors. When two vectors are pro-
portional to each other (i.e., when they have the same direction), their cosine
is equal to 1; when they are orthogonal to each other, their cosine is equal to 0.

3.2 Distance between vectors

Among the large family of distances between vectors, the most popular by far
is the Fuclidean distance. It is closely related to the cosine between vectors and
is defined as

dlz,y)=(@-y) (@-y) =dz+ydy- 20y 2)
= ||| + lyl| — 2[cos(a, y) x llzll x lyl] = > (i —v:)? .

3.3 Projection of one vector onto another vector
The (orthogonal) projection of vector & on vector w is defined as

-
TYw= cos(x, w) X M'w (3)

Proj, = .
“’ [[w]|

ww

The norm of proj,,x is its distance to the origin of the space. It is equal to
. | " w|
[[projy, || = ol |cos(z, y)| x ||zl - (4)

3.4 Illustration: Hebbian and Widrow-Hoff learning rules

A neural network consists of cells connected to other cells via modifiable weighted
connections called synapses. Consider a network made of I input cells and only
one output cell. The information is transmitted via the synapses, from a set of
external input cells to the output cell which gives a response corresponding to
its state of activation. If the input pattern and the set of synaptic weights are
given by I-dimensional vectors denoted x, and w, the activation of the output
cell is obtained as

a=rw. (5)

So the activation is proportional to the norm of the projection of the input
vector onto the weight vector. The response or output of the cell is denoted o.
For a linear cell, it is proportional to the activation (for convenience, assume
that the proportionality constant is equal to 1). Linear heteroassociators and
autoassociators are made of linear cells. In general, the output of a cell is a
function (often, but not necessarily, continuous), called the transfer function, of
its activation

o=f(a) . (6)

For example, in backpropagation networks, the (nonlinear) transfer function is
usually the logistic function

1

- = logistw e = ————— .
o= f(a)=logistw'x T+ expl—al

(7)

Often, a neural network is designed to associate, to a given input, a specific
response called the target, denoted t. Learning is equivalent to defining a rule
that specifies how to add a small quantity to each synaptic weight at each
learning iteration. Learning makes the output of the network closer to the
target.

Learning rules come in two main flavors: supervised (e.g., Widrow-Hoff)
which take into account the error or distance between the response of the neu-
ron and the target and unsupervised (e.g., Hebbian) which do not require such
“feedback.” The Hebbian learning rule modifies the weight vector at iteration
n+1as

Wint1] = Wiy +0tx (8)

where 7 is a small positive constant called the learning constant. So, a Hebbian
learning iteration moves the weight vector in the direction of the input vector
by an amount proportional to the target.

The Widrow-Hoff learning rule uses the error and the derivative of the trans-
fer function (f”) to compute the correction as

W1 = Wiy + 0f (a)(t —o)x . 9)

So, a Widrow-Hoff learning iteration moves the weight vector in the direction
of the input vector by an amount proportional to the error.

For networks with several cells (say J) in the output layer, the pattern of
activation, output, and target become J-dimensional vectors (denoted a, o, and
t, respectively), and the synaptic weights are stored in an I x J matrix W. The
learning equations become

Wiy = Wi + naxt (Hebbian) and
Wini1) = Wiy + n(f'(a) ® z)(t — o) (Widrow-Hoff) , (10)

(the derivative of the transfer function is applied elementwise).

In general, several (say K) input/target associations are to be learned. Then
the set of input patterns is stored in an I x K matrix denoted X, the activation
and target patterns respectively are stored in J x K matrices denoted A and T'
respectively. The activation and learning iterations can be computed for all the
patterns at once (this is called batch mode). The output matrix is computed as

O=f(A)=f(WX) (11)

(f is applied elementwise). The learning equations become
W1y = Wiy +nXT (Hebb) and (12)
Wit = Wi +0(f/(A) ® X)(T — O) (Widrow-Hoff) . (13)

4 Eigenvalues, eigenvectors, and the singular value
decomposition

FEigenvectors of a given square matrix W (resulting from its eigendecomposition)
are vectors invariant under multiplication by W. The eigendecomposition is
best defined for a subclass of matrices called positive semi-definite matrices. A
matrix X is positive semi-definite if there exists another matrix Y such that
X =YY" This is the case for most matrices used in neural networks and so
we will consider only this case here.

Formally, a (nonzero) vector u is an eigenvector of a square matrix W if

Au=Wu. (14)

The scalar A is the eigenvalue associated with w. So, u is an eigenvector of Wif
its direction is invariant under multiplication by W (only its length is changed

if A # 1). There are, in general, several eigenvectors for a given matrix (at most
as many as the dimension of W'). They are in general ordered by decreasing
order of their eigenvalue. So, the first eigenvector, u; has the largest eigenvalue
A1. The number of eigenvectors with a non-zero eigenvalue is the rank of the
matrix.

The eigenvalues of positive semi-definite matrices are always positive or zero
(a matrix with strictly positive eigenvalues, is positive definite). Also, any two
eigenvectors with different eigenvalues are orthogonal, i.e.

wlup =0 V¥ (£ . (15)

In addition, the set of eigenvectors of a matrix constitutes an orthogonal basis
for its rows and columns. This is expressed by defining two matrices: the
eigenvector matrix U, and the diagonal matrix of the eigenvalues: A. The
eigendecomposition of W (with rank L) is

L
W =UAU" = > Nusu/, or equivalently: A=U WU . (16)
4

The singular value decomposition (SVD) generalizes the eigendecomposition
to rectangular matrices. If X is an I x K matrix, its SvD is defined as

X =UAV" with U'U = V'V =TI and A being a diagonal matrix . (17)

(I being the identity matrix). The diagonal elements of A are real positive
numbers called the singular values of X. The matrices U and V are the left
and right matrices of singular vectors (which are also eigenvectors, see below).
The svD is closely related to the eigendecomposition because U, V, and A can
be obtained from the eigendecomposition of matrices X' X and X X' as

XX =UAU", X'X=VAV', and A = A? (18)

(note that X* X and X X' have the same eigenvalues).

The eigen- and singular value decompositions are used in most fields of
applied mathematics including statistics, image processing, mechanics, and dy-
namical systems. For neural networks, they are essential for studying the dy-
namics of linear autoassociators and heteroassociators.

4.1 TIterative processes

A linear heteroassociator using the Widrow-Hoff rule, learning modifies only the
eigenvalues of the weight matrix. Specifically, if the patterns to be learned are
stored in an I x K matrix X, with singular value decomposition as X = UAVT,
then the learning equation (see Equation 12) becomes [because for a linear
heteroassociator, O = A, and f'(A) = I

Wi = Wi +0X(T— A =U {A*l [I —(I- nAz)”“} } VITT | (19)

(see Abdi, 1994, p.54ff.).
The Hebbian weight matrix corresponds to the first iteration of the algo-
rithm, i.e.,

Wiy =U{A™ [1-(1-3a%)' [} VT U (A} VT =nXT . (20)

Equation 19 characterizes the values of 7 that allow the iterative process to
converge. Denoting by dy,ax the largest singular value of X, if n is such that

0<n< 20,2 (21)

max
then it can be shown that (see Abdi, 1994)

lim (I-7nA%)" =0, and lim Wi, =UA"'VIT =X'T. (22)
n—oo n—oo

The matrix Xt = UAT'VT is the pseudo-inverse of X. It gives a least-square
optimal solution for the association between the input and the target. Thus,
the linear heteroassociator is equivalent to linear multiple regression. If n is
outside the interval defined by Equation 21, then both the singular values and
the elements of the weight matrix will grow at each iteration. In practice,
because neural networks are simulated by digital computers, the weight matrix
will eventually reach the limits of the precision of the machine.

When the target vectors are the same as the input vectors (i.e., when each
input is associated to itself), the linear heteroassociator becomes a linear autoas-
sociator. The previous approach shows that, now, the Hebbian weight matrix
is the cross-product matrix

Wy =XX =UAU . (23)

With Widrow-Hoff learning, when convergence is reached, all nonzero eigenval-
ues of the weight matrix are equal to 1. The weight matrix is then said to be
spherical; it is equal to

Wi =UU . (24)

Because the statistical technique of principal component analysis (PCA) com-
putes the eigendecomposition of a cross-product matrix similar to W, the linear
autoassociator is considered as the neural network equivalent of PCA.

5 Optimization, Derivative and Matrices

Neural networks are often used to optimize a function of the synaptic weights.
The differentiation of a function is the major concept for exploring optimization
problems and, for neural networks, it involves differentiating vectors or matrix
functions. In this context, we need to consider the transfer function as being a
function of the weight vector. This is expressed by rewriting Equation 6 as

o=f(w) . (25)

The derivative of f (w) with respect to the I x 1 vector w is denoted by
V #(w)- It is also called the gradient of f, i.e.,

of Tof of of"
Vi) = o = |2 2L 26
7)™ Jw [awl dw;" " dwy (26)
For example, the derivative of the output of a linear neuron is
9 T T T..77
7f= 6wm’-..78wx7.“,8wm} Z[zl,...,xi,...,xj]T:a:. (27)
ow 811)1 811)1 8w1

When a function is twice differentiable, the second order derivatives are
stored in a matrix called the Hessian matrix of the function. It is often denoted
by H or V? and is formally defined as

e B e
ow? Owiws — Owiwg
) O*f ﬁ O*f
H =V7% = juwyu ows 7 dwawy (28)
I I
| Owrw; Owrws ow? |

5.1 Conditions for minimum

A standard problem is to show that a given learning rule finds an optimum
solution in the sense that a function of the weight vector (or matrix) called the
error function reaches its minimum value when learning has converged. Often,
the error function is defined as the sum of the squared error over all patterns.

When the gradient of the error function can be evaluated, a necessary condi-
tion for optimality (i.e., either minimum or maximum) is to find a weight vector
w such that

Vi@ =0. (29)

This condition is also sufficient provided H is positive definite (cf. Haykin,
1999).

5.2 Taylor expansion

The Taylor expansion is the standard technique used to obtain a linear or a
quadratic approximation of a function of one variable. Recall that the Taylor
expansion of a continuous function f(z) is

"

' " (g
f(x):f(a)—i-(:r—a)fl(!>+(x—a)2f2(!)+...(;E—a)"fn!()—i-
:f(a)—l—(:r—a)fl(!a)+(x—a)2fT(ﬁ)+R2~ (30)

(where R represents all the terms of higher order than 2, and a is a “convenient”
value at which to evaluate f).

This technique can be extended to matrix and vector functions. It involves
the notion of gradient and Hessian. Now a vector function f (x) is expressed as:

f@=fla)+f(x—a) Via+flx— a)TV?c(a)f (x—a)+Rz2. (31)

5.3 Iterative minimization

A learning rule can be shown to converge to an optimum if it diminishes the
value of the error function at each iteration. When the gradient of the error
function can be evaluated, the gradient technique (or steepest descent) adjusts
the weight vector by moving it in the direction opposite to the gradient of the
error function. Formally, the correction for the (n + 1)-th iteration is

Wipi1) = W)+ A = W) — 7V f(w) (32)

(where V g() is computed for wy).

As an example, let us show that for a linear heteroassociator, the Widrow-
Hoff learning rule minimizes iteratively the squared error between target and
output. The error function is

e2=(t—0 =t +0—2to=1*+ 2wz 2wz . (33)
The gradient of the error function is

de 7 B T
o 2w x)r — 2t = -2(t —w x)x . (34)

The weight vector is corrected by moving it in the opposite direction of the
gradient. This is obtained by adding a small vector denoted A, opposite to
the gradient. This gives the following correction for iteration n + 1:

Wpt1] = Wy + Ay = Wp) — n% = Wip) + n(t — fwT:c).’B = Wiy + n(t - 0):13 .
(35)
This gives the rule defined by Equation 9.

The gradient method works because the gradient of wy,) is a first order
Taylor approximation of the gradient of the optimal weight vector w. It is a
favorite technique in neural networks because the popular error backpropagation
is a gradient technique.

Newton’s method is a second order Taylor approximation, it uses the inverse
of the Hessian of w (supposing it exists). It gives a better numerical approx-
imation but necessitates more computation. Here the correction for iteration
n+1is

Wp+1] = Wip] +A = Win] — (Hil)(vf(w)) (36)

(where V p(y,) is computed for wy,).

6 Useful References

Linear algebra at the level of this presentation is available in the following recent
books: Abdi et al. (1999), Bishop (1995) Ellacot and Bose (1996), Haggan,
Demuth, and Beale (1996), Haykin (1999), Reed and Marks (1999), Ripley
(1996), and Rojas (1996).

See also: Artificial neural networks: neurocomputation; Backpropagation;
Hebb, Donald Olding (1904-1985); Statistical pattern recognition.

References

[1] ABDI, H. (1994a) Les réseaux de neurones. Grenoble, France: PUG.
[2] ABDI, H., VALENTIN, D., & EDELMAN, B. (1999) Neural networks. Thousand

Oak, CA: Sage.

[3] BISHOP, C.M. (1995) Neural network for pattern recognition. Oxford, UK:

Oxford University Press.

[4] ELLACOTT, S., & BOSE, D. (1996) Neural networks: Deterministic methods of

analysis. London: ITC.

[5] HAGAN, M. T., DEMUTH, H. B., & BEALE, M. (1996) Neural networks design.

Boston: PWS.

[6] HAYKIN, S. (1999) Neural networks: A comprehensive foundation (2nd ed).

New York: Prentice Hall.
] REED, R.D., MARKS R.J. (1999) Neural smithing. Cambridge, MA: MIT press.
| RIPLEY, B.D. (1996) Pattern recognition and neural networks. Cambridge,
MA: Cambridge University Press.

[9] ROJAS, R. (1996) Neural networks. New York: Springer-Verlag.

