ai_pdf/backend/inference.py
Crizomb 18f35b28c2 * added log tab
* added references text box
* added options to choose embedding models
2024-04-20 12:54:24 +02:00

76 lines
No EOL
3.1 KiB
Python

from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores.chroma import Chroma
from openai import OpenAI
from backend.vector_db_manager import VectorDbManager
from typing import Optional, Iterator, Dict
from pathlib import Path
# point to the local server, I personally use LM Studio to run local LLMs
# You can change this to any other OpenAI API endpoint, local or not
client = OpenAI(base_url="http://localhost:1234/v1", api_key="not-needed")
class InferenceInstance:
def __init__(self, vector_db_manager: VectorDbManager, nb_chunks_retrieved: int = 4):
self.vector_db_manager = vector_db_manager
self.history = []
self.nb_chunks_retrieved = nb_chunks_retrieved
flush_relevant_content()
def get_next_token(self, input_user: str, doc_name: str) -> Iterator[Dict[str, str]]:
is_pdf = doc_name.endswith(".pdf")
print(f"doc_name: {doc_name}")
new_assistant_message = {"role": "assistant", "content": ""}
search_results = self._get_search_results(input_user, doc_name)
self._update_history(input_user, search_results, is_pdf)
print(f"search results: {search_results}")
completion = self._get_completion()
for chunk in completion:
if chunk.choices[0].delta.content:
new_assistant_message["content"] += chunk.choices[0].delta.content
yield new_assistant_message["content"]
def _get_search_results(self, input_user: str, doc_name: str):
print(f"input_user: {input_user}")
vector_db = self.vector_db_manager.get_chroma(doc_name)
return vector_db.similarity_search(input_user, k=4)
def _update_history(self, input_user: str, search_results, is_pdf):
references_textbox_content = ""
some_context = ""
pages = []
for result in search_results:
if is_pdf:
pages.append(str(result.metadata['page']))
some_context += result.page_content + "\n\n"
pages_info = f'on page {result.metadata["page"]}' if is_pdf else 'in the document'
references_textbox_content += f"**Relevant content viewed {pages_info}**: \n\n" \
f" \n\n {result.page_content}\n\n" \
"-----------------------------------\n\n"
with open("../temp_file/relevant_content.mmd", "w") as f:
f.write(references_textbox_content)
self.history.append({"role": "system", "content": f"relevant content for user question {some_context}"})
self.history.append({"role": "user", "content": input_user})
return pages
def _get_completion(self):
return client.chat.completions.create(
model="local-model",
messages=self.history,
temperature=0.7,
stream=True,
)
def read_relevant_content():
with open("../temp_file/relevant_content.mmd", "r") as f:
return f.read()
def flush_relevant_content():
with open("../temp_file/relevant_content.mmd", "w") as f:
f.write("")