ai_pdf/backend/vector_db_manager.py
2024-04-17 00:24:21 +02:00

88 lines
3.1 KiB
Python

from langchain_core.embeddings import Embeddings
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter, Language
from langchain_community.document_loaders import PyPDFLoader
from pathlib import Path
import os
class VectorDbManager:
def __init__(self, embedding_function: Embeddings, embedding_name: str, chunk_size: int, db_directory: Path):
self.embedding_function = embedding_function
self.embedding_name = embedding_name
self.db_directory = db_directory
self.chunk_size = chunk_size
def create_vector_store_from_pdf(self, pdf_path):
"""
create a chroma vector store from a pdf file path
store the vector store in the db_directory/pdf_name
where pdf_name is the name of the pdf file
:param pdf_path:
:return:
"""
pdf_path = Path(pdf_path)
pdf_name = pdf_path.name
vector_directory = self.db_directory/self.embedding_name/pdf_name
if os.path.isdir(vector_directory):
print(f"{vector_directory} found, not recreating a vector store")
return 0
print(f"creating vector store for {vector_directory}")
file = PyPDFLoader(pdf_path)
docs = []
pages = file.load_and_split()
for j, page in enumerate(pages):
docs.append(page)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=self.chunk_size,
chunk_overlap=64,
length_function=len,
is_separator_regex=False,
)
docs = text_splitter.split_documents(docs)
vectorstore = Chroma.from_documents(docs, self.embedding_function, persist_directory=vector_directory)
print("vector store created")
print(vectorstore)
def create_vector_store_from_latex(self, latex_path: Path):
"""
create a chroma vector store from a latex file path
store the vector store in the db_directory/doc_name
where doc_name is the name of the latex file
:param latex_path:
:return:
"""
doc_name = latex_path.name
vector_directory = self.db_directory/self.embedding_name/doc_name
if os.path.isdir(vector_directory):
print(f"{vector_directory} found, not recreating a vector store")
return 0
print(f"creating vector store for {vector_directory}")
with open(latex_path, mode="r") as file:
text_splitter = RecursiveCharacterTextSplitter(chunk_size=self.chunk_size, chunk_overlap=100)
docs = text_splitter.split_document(file.read())
vectorstore = Chroma.from_documents(docs, self.embedding_function, persist_directory=vector_directory)
def get_chroma(self, doc_name):
"""
get the chroma vector store for a given document name
:param doc_name:
:return:
"""
vector_directory = self.db_directory/self.embedding_name/doc_name
return Chroma(persist_directory=vector_directory, embedding_function=self.embedding_function)