Add files via upload
This commit is contained in:
commit
3eb99eb809
3 changed files with 1264 additions and 0 deletions
414
chess_ai.py
Normal file
414
chess_ai.py
Normal file
|
@ -0,0 +1,414 @@
|
|||
from chess_tools import get_possible_moves, move_piece, init_board, get_time
|
||||
import numpy as np
|
||||
import time
|
||||
import random
|
||||
|
||||
|
||||
|
||||
|
||||
inf = float("inf")
|
||||
|
||||
score_table = {"Q" : 9, "R" : 5, "B" : 3.3, "N" : 3.2, "P" : 1, "K" : 10**5 ,"q" : -9, "r" : -5, "b" : -3, "n" : -3, "p" : -1, "k" : -10**5, '':0, '.':0}
|
||||
|
||||
count = 0
|
||||
|
||||
|
||||
|
||||
class Heuristics:
|
||||
|
||||
# The tables denote the points scored for the position of the chess pieces on the board.
|
||||
# Source : https://www.chessprogramming.org/Simplified_Evaluation_Function
|
||||
|
||||
PAWN_TABLE = [
|
||||
[ 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[ 5, 10, 10,-20,-20, 10, 10, 5],
|
||||
[ 5, -5,-10, 0, 0,-10, -5, 5],
|
||||
[ 0, 0, 0, 20, 20, 0, 0, 0],
|
||||
[ 5, 5, 10, 25, 25, 10, 5, 5],
|
||||
[10, 10, 20, 30, 30, 20, 10, 10],
|
||||
[50, 50, 50, 50, 50, 50, 50, 50],
|
||||
[ 0, 0, 0, 0, 0, 0, 0, 0]
|
||||
]
|
||||
|
||||
KNIGHT_TABLE = [
|
||||
[-50, -40, -30, -30, -30, -30, -40, -50],
|
||||
[-40, -20, 0, 5, 5, 0, -20, -40],
|
||||
[-30, 5, 10, 15, 15, 10, 5, -30],
|
||||
[-30, 0, 15, 20, 20, 15, 0, -30],
|
||||
[-30, 5, 15, 20, 20, 15, 0, -30],
|
||||
[-30, 0, 10, 15, 15, 10, 0, -30],
|
||||
[-40, -20, 0, 0, 0, 0, -20, -40],
|
||||
[-50, -40, -30, -30, -30, -30, -40, -50]
|
||||
]
|
||||
|
||||
BISHOP_TABLE = [
|
||||
[-20, -10, -10, -10, -10, -10, -10, -20],
|
||||
[-10, 5, 0, 0, 0, 0, 5, -10],
|
||||
[-10, 10, 10, 10, 10, 10, 10, -10],
|
||||
[-10, 0, 10, 10, 10, 10, 0, -10],
|
||||
[-10, 5, 5, 10, 10, 5, 5, -10],
|
||||
[-10, 0, 5, 10, 10, 5, 0, -10],
|
||||
[-10, 0, 0, 0, 0, 0, 0, -10],
|
||||
[-20, -10, -10, -10, -10, -10, -10, -20]
|
||||
]
|
||||
|
||||
ROOK_TABLE = [
|
||||
[ 0, 0, 0, 5, 5, 0, 0, 0],
|
||||
[-5, 0, 0, 0, 0, 0, 0, -5],
|
||||
[-5, 0, 0, 0, 0, 0, 0, -5],
|
||||
[-5, 0, 0, 0, 0, 0, 0, -5],
|
||||
[-5, 0, 0, 0, 0, 0, 0, -5],
|
||||
[-5, 0, 0, 0, 0, 0, 0, -5],
|
||||
[ 5, 10, 10, 10, 10, 10, 10, 5],
|
||||
[ 0, 0, 0, 0, 0, 0, 0, 0]
|
||||
]
|
||||
|
||||
QUEEN_TABLE = [
|
||||
[-20, -10, -10, -5, -5, -10, -10, -20],
|
||||
[-10, 0, 0, 0, 0, 0, 0, -10],
|
||||
[-10, 0, 0, 0, 0, 0, 0, -10],
|
||||
[ 0, 0, 0, 0, 0, 0, 0, -5],
|
||||
[ -5, 0, 0, 0, 0, 0, 0, -5],
|
||||
[-10, 0, 0, 0, 0, 0, 0, -10],
|
||||
[-10, 0, 0, 0, 0, 0, 0, -10],
|
||||
[-20, -10, -10, -5, -5, -10, -10, -20]
|
||||
]
|
||||
|
||||
KING_TABLE_MG = [
|
||||
[ 20, 50, 10, 0, 0, 10, 10, 20],
|
||||
[ 20, 20, 0, 0, 0, 0, 20, 20],
|
||||
[-10, -20, -20, -20, -20, -20, -20, -10],
|
||||
[-20, -30, -30, -40, -40, -30, -30, -20],
|
||||
[-30, -40, -40, -50, -50, -40, -40, -30],
|
||||
[-30, -40, -40, -50, -50, -40, -40, -30],
|
||||
[-30, -40, -40, -50, -50, -40, -40, -30],
|
||||
[-30, -40, -40, -50, -50, -40, -40, -30]
|
||||
]
|
||||
|
||||
KING_TABLE_EG = [
|
||||
[-50, -30, -30, -30, -30, -30, -30, -50],
|
||||
[-30, -30, 0, 0, 0, 0, -30, -30],
|
||||
[-30, -10, 20, 30, 30, 20, -10, -30],
|
||||
[-30, -10, 30, 40, 40, 30, -10, -30],
|
||||
[-30, -10, 30, 40, 40, 30, -10, -30],
|
||||
[-30, -10, 20, 30, 30, 20, -10, -30],
|
||||
[-30, -20, -10, 0, 0, -10, -20, -30],
|
||||
[-50, -40, -30, -20, -20, -30, -40, -50]
|
||||
]
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def get_position_score(start, board):
|
||||
"""Evaluate the position of a piece on the board."""
|
||||
global game_phase
|
||||
piece = board[start]
|
||||
if piece == 'P':
|
||||
return Heuristics.PAWN_TABLE[start[0]][start[1]]
|
||||
if piece == 'p':
|
||||
return -Heuristics.PAWN_TABLE[7 - start[0]][start[1]]
|
||||
if piece == 'N':
|
||||
return Heuristics.KNIGHT_TABLE[start[0]][start[1]]
|
||||
if piece == 'n':
|
||||
return -Heuristics.KNIGHT_TABLE[7 - start[0]][start[1]]
|
||||
if piece == 'B':
|
||||
return Heuristics.BISHOP_TABLE[start[0]][start[1]]
|
||||
if piece == 'b':
|
||||
return -Heuristics.BISHOP_TABLE[7 - start[0]][start[1]]
|
||||
if piece == 'R':
|
||||
return Heuristics.ROOK_TABLE[start[0]][start[1]]
|
||||
if piece == 'r':
|
||||
return -Heuristics.ROOK_TABLE[7 - start[0]][start[1]]
|
||||
if piece == 'Q':
|
||||
return Heuristics.QUEEN_TABLE[start[0]][start[1]]
|
||||
if piece == 'q':
|
||||
return -Heuristics.QUEEN_TABLE[7 - start[0]][start[1]]
|
||||
if piece == 'K':
|
||||
if game_phase < 45:
|
||||
return Heuristics.KING_TABLE_EG[start[0]][start[1]]
|
||||
else:
|
||||
return Heuristics.KING_TABLE_MG[start[0]][start[1]]
|
||||
if piece == 'k':
|
||||
if game_phase < 45:
|
||||
return -Heuristics.KING_TABLE_EG[7 - start[0]][start[1]]
|
||||
else:
|
||||
return -Heuristics.KING_TABLE_MG[7 - start[0]][start[1]]
|
||||
|
||||
return 0
|
||||
|
||||
|
||||
def get_king_safety(start, board):
|
||||
"""King is safe if protected by a wall of pawns"""
|
||||
x, y = start
|
||||
piece = board[x, y]
|
||||
if piece == "K":
|
||||
king_safety = (board[max(x-1, 0), y+1] == "P") + (board[x, y+1] == "P") + (board[min(x+1, 7), y+1] == "P")
|
||||
elif piece == "k":
|
||||
king_safety = (board[max(x-1, 0), y-1] == "p") + (board[x, y-1] == "p") + (board[min(x+1, 7), y-1] == "p")
|
||||
king_safety = -king_safety
|
||||
else:
|
||||
king_safety = 0
|
||||
return king_safety
|
||||
|
||||
def get_pawn_defend(start, board):
|
||||
"""A good pawn is a pawn that defend another piece"""
|
||||
x, y = start
|
||||
piece = board[x, y]
|
||||
if piece == "P" and y+1<=7:
|
||||
if x-1 >= 0:
|
||||
if x+1<=7:
|
||||
pawn_defend = board[x-1, y+1].isupper() + board[x+1, y+1].isupper()
|
||||
else:
|
||||
pawn_defend = board[x-1, y+1].isupper()
|
||||
else:
|
||||
pawn_defend = board[x+1, y+1].isupper()
|
||||
|
||||
elif piece == "p" and y-1>=0:
|
||||
if x-1 >= 0:
|
||||
if x+1<=7:
|
||||
pawn_defend = board[x-1, y-1].islower() + board[x+1, y-1].islower()
|
||||
else:
|
||||
pawn_defend = board[x-1, y-1].islower()
|
||||
else:
|
||||
pawn_defend = board[x+1, y-1].islower()
|
||||
|
||||
else:
|
||||
pawn_defend = 0
|
||||
|
||||
return pawn_defend
|
||||
|
||||
def get_rook_score(start, board):
|
||||
"""A good rook is a rook that can move in a straight line"""
|
||||
x, y = start
|
||||
piece = board[x, y]
|
||||
rook_score = 0
|
||||
if piece == "R" or piece == "r":
|
||||
for i in range(1, 8):
|
||||
if x-i >= 0:
|
||||
if board[x-i, y] == ".":
|
||||
rook_score += 1
|
||||
else:
|
||||
break
|
||||
else:
|
||||
break
|
||||
for i in range(1, 8):
|
||||
if x+i <= 7:
|
||||
if board[x+i, y] == ".":
|
||||
rook_score += 1
|
||||
else:
|
||||
break
|
||||
else:
|
||||
break
|
||||
for i in range(1, 8):
|
||||
if y-i >= 0:
|
||||
if board[x, y-i] == ".":
|
||||
rook_score += 2
|
||||
else:
|
||||
break
|
||||
else:
|
||||
break
|
||||
for i in range(1, 8):
|
||||
if y+i <= 7:
|
||||
if board[x, y+i] == ".":
|
||||
rook_score += 2
|
||||
else:
|
||||
break
|
||||
else:
|
||||
break
|
||||
return rook_score
|
||||
|
||||
|
||||
|
||||
def get_other_eval(start, board):
|
||||
"""Evaluation not based on the conventional chess pieces values and on the position"""
|
||||
king_safety = get_king_safety(start, board)
|
||||
pawn_defend = get_pawn_defend(start, board)
|
||||
rook_score = get_rook_score(start, board)
|
||||
|
||||
return king_safety*10 + pawn_defend*10 + rook_score*2
|
||||
|
||||
|
||||
def leaf_eval(board):
|
||||
"""Evaluate a certain board position"""
|
||||
global count
|
||||
count += 1
|
||||
#evalute using score_table, position score and other eval
|
||||
evaluate = lambda x,y: score_table[board[x, y]] * 100 + get_position_score((x, y), board) + get_other_eval((x, y), board)
|
||||
return sum(evaluate(x, y) for y in range(8) for x in range(8)) + random.random()*10
|
||||
|
||||
game_phase = 0
|
||||
def get_game_phase(board):
|
||||
global game_phase
|
||||
game_phase = sum(abs(score_table[board[x, y]]) for y in range(8) for x in range(8)) - 2 * score_table['K']
|
||||
|
||||
|
||||
def minmax(node, depth, alpha=-inf, beta=inf):
|
||||
is_maximizing = node.color == 'white'
|
||||
if depth == 0 or node.is_leaf:
|
||||
return node.score
|
||||
if is_maximizing:
|
||||
score = -inf
|
||||
for child in node.children:
|
||||
score = max(score, minmax(child, depth - 1, alpha, beta))
|
||||
alpha = max(alpha, score)
|
||||
if beta <= alpha:
|
||||
break
|
||||
return score
|
||||
else:
|
||||
score = inf
|
||||
for child in node.children:
|
||||
score = min(score, minmax(child, depth - 1, alpha, beta))
|
||||
beta = min(beta, score)
|
||||
if beta <= alpha:
|
||||
break
|
||||
return score
|
||||
|
||||
def evaluate_move(start, end, board):
|
||||
"""Evaluate a move. Just used in "create_and_evaluate_tree" to sort the moves to optimize alpha-beta pruning"""
|
||||
position_score = get_position_score(start, board)
|
||||
take_score = score_table[board[end]]*100
|
||||
return position_score + take_score
|
||||
|
||||
|
||||
class Node:
|
||||
__slots__ = 'board', 'move', 'parent', 'children', 'score', 'depth', 'color', 'board_score'
|
||||
def __init__(self, board, move, parent, children, score, depth, color):
|
||||
self.board = board
|
||||
self.move = move
|
||||
self.parent = parent
|
||||
self.children = children
|
||||
self.score = score
|
||||
self.depth = depth
|
||||
self.color = color
|
||||
|
||||
@property
|
||||
def is_leaf(self):
|
||||
return not self.children
|
||||
|
||||
@property
|
||||
def is_root(self):
|
||||
return self.parent is None
|
||||
|
||||
def evalute_tree(self):
|
||||
if self.is_leaf:
|
||||
self.score = leaf_eval(self.board)
|
||||
else:
|
||||
for child in self.children:
|
||||
child.evalute_tree()
|
||||
self.score = minmax(self, self.depth)
|
||||
|
||||
|
||||
def create_and_evaluate_tree(self, depth, alpha=-inf, beta=inf):
|
||||
if depth == 0:
|
||||
self.score = leaf_eval(self.board)
|
||||
else:
|
||||
movable_pieces = ((x, y) for x in range(8) for y in range(8) if
|
||||
self.board[x, y] != '.' and self.color == 'white' and self.board[x, y].isupper() or self.color == 'black' and self.board[x, y].islower())
|
||||
for piece in movable_pieces:
|
||||
possible_moves = get_possible_moves(piece, self.board)
|
||||
possible_moves.sort(key=lambda x: abs(evaluate_move(piece, x, self.board)), reverse=True)
|
||||
#possible_moves.sort(key=lambda x: evaluate_move(piece, x, self.board), reverse= self.color == "white")
|
||||
for move in possible_moves:
|
||||
new_board = move_piece(piece, move, self.board)
|
||||
new_move = (piece, move)
|
||||
new_node = Node(new_board, new_move, self, [], 0, self.depth - 1, 'white' if self.color == 'black' else 'black')
|
||||
self.children.append(new_node)
|
||||
if self.color == 'white':
|
||||
alpha = max(alpha, new_node.create_and_evaluate_tree(depth - 1, alpha, beta))
|
||||
if beta <= alpha:
|
||||
break
|
||||
#To stop exploring if one king is taken
|
||||
if abs(self.score) > 10**4:
|
||||
break
|
||||
else:
|
||||
beta = min(beta, new_node.create_and_evaluate_tree(depth - 1, alpha, beta))
|
||||
if beta <= alpha:
|
||||
break
|
||||
if abs(self.score) > 10**4:
|
||||
break
|
||||
if not self.children:
|
||||
self.score = leaf_eval(self.board)
|
||||
else:
|
||||
self.score = max(child.score for child in self.children if child.score is not None) if self.color == 'white' else min(child.score for child in self.children if child.score is not None)
|
||||
return self.score
|
||||
|
||||
|
||||
def get_best_move(self):
|
||||
self.evalute_tree()
|
||||
maximazing = self.color == 'white'
|
||||
if maximazing:
|
||||
maxi = max(self.children, key=lambda x: x.score)
|
||||
print(f"maxi: {maxi.score}")
|
||||
return maxi.move
|
||||
else:
|
||||
mini = min(self.children, key=lambda x: x.score)
|
||||
print(f"mini: {mini.score}")
|
||||
return mini.move
|
||||
|
||||
def pretty(self):
|
||||
string = f"Node: {self.move} {self.score} {self.depth} {self.color} \n"
|
||||
for child in self.children:
|
||||
string += "| " + child.pretty() + "\n"
|
||||
return string
|
||||
|
||||
def __repr__(self):
|
||||
return self.pretty()
|
||||
|
||||
|
||||
get_deeper = 0
|
||||
|
||||
def get_best_move(board, color, depth):
|
||||
global count, get_deeper
|
||||
get_game_phase(board)
|
||||
print(f"End game: {game_phase}")
|
||||
depth += get_deeper
|
||||
print(f"curent depth: {depth}")
|
||||
a = time.time()
|
||||
root = Node(board, None, None, [], 0, 0, color)
|
||||
root.create_and_evaluate_tree(depth)
|
||||
best_move = root.get_best_move()
|
||||
exec_time = time.time() - a
|
||||
print(f"Tree evaluated in {time.time() - a} seconds")
|
||||
print(f"Number of leafs: {count}")
|
||||
|
||||
if exec_time < 1.5:
|
||||
get_deeper += 1
|
||||
print("Getting deeper, current depth: ", depth)
|
||||
elif exec_time > 20:
|
||||
get_deeper += -1
|
||||
print("Getting shallower, current depth: ", depth)
|
||||
|
||||
print(f"Mean number of children : {count**(1/depth)}")
|
||||
count = 0
|
||||
|
||||
|
||||
return best_move
|
||||
|
||||
if __name__ == '__main__':
|
||||
board = init_board()
|
||||
b = get_best_move(board, 'white', 2)
|
||||
print(b)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue