Hopefully before really raymarching testing

This commit is contained in:
Crizomb 2025-09-24 23:26:46 +02:00
parent d2f0abff6a
commit 6ed5b21890
5 changed files with 206 additions and 27 deletions

5
color.go Normal file
View file

@ -0,0 +1,5 @@
package main
type Color interface {
GetColor(Vector3) Vector3
}

34
primitives_sdf.go Normal file
View file

@ -0,0 +1,34 @@
package main
// Sphere
type Sphere struct {
center Vector3
radius float64
color Color
}
func (s Sphere) Distance(p Vector3) (float64, Color) {
return p.Sub(s.center).Length(), s.color
}
// Box
type Box struct {
center Vector3
dimensions Vector3
color Color
}
func (s Box) Distance(p Vector3) (float64, Color) {
q := p.Sub(s.center).Abs().Sub(s.dimensions)
return q.Max(0.0).Length() + min(max(q.X, max(q.Y, q.Z)), 0.0), s.color
}
type Plane struct {
normal Vector3
height float64
color Color
}
func (s Plane) Distance(p Vector3) (float64, Color) {
return p.Dot(s.normal) + s.height, s.color
}

153
sdf.go
View file

@ -1,67 +1,168 @@
package main
import "math"
const EPS = 0.001
type SDF interface {
Distance(Vector3) float64
Distance(Vector3) (float64, Color)
}
func DistanceOnly(sdf SDF, p Vector3) float64 {
dist, _ := sdf.Distance(p)
return dist
}
func Gradient(sdf SDF, p Vector3, eps float64) Vector3 {
dx := (sdf.Distance(p.Add(Vector3{X: eps})) - sdf.Distance(p.Add(Vector3{X: -eps}))) / (2 * eps)
dy := (sdf.Distance(p.Add(Vector3{Y: eps})) - sdf.Distance(p.Add(Vector3{Y: -eps}))) / (2 * eps)
dz := (sdf.Distance(p.Add(Vector3{Z: eps})) - sdf.Distance(p.Add(Vector3{Z: -eps}))) / (2 * eps)
dx := (DistanceOnly(sdf, p.Add(Vector3{X: eps})) - DistanceOnly(sdf, p.Add(Vector3{X: -eps}))) / (2 * eps)
dy := (DistanceOnly(sdf, p.Add(Vector3{Y: eps})) - DistanceOnly(sdf, p.Add(Vector3{Y: -eps}))) / (2 * eps)
dz := (DistanceOnly(sdf, p.Add(Vector3{Z: eps})) - DistanceOnly(sdf, p.Add(Vector3{Z: -eps}))) / (2 * eps)
return Vector3{X: dx, Y: dy, Z: dz}
}
// Some transformations see https://iquilezles.org/articles/distfunctions/
type translatedSDF struct {
type TranslatedSDF struct {
primitive SDF
translate Vector3
}
func (s translatedSDF) Distance(p Vector3) float64 {
func (s TranslatedSDF) Distance(p Vector3) (float64, Color) {
return s.primitive.Distance(p.Sub(s.translate))
}
type rotatedSDF struct {
type RotatedSDF struct {
primitive SDF
rotVector Vector3
angle float64
}
func (s rotatedSDF) Distance(p Vector3) float64 {
rotated_p := rotate(p, s.rotVector, s.angle)
func (s RotatedSDF) Distance(p Vector3) (float64, Color) {
rotated_p := Rotate(p, s.rotVector, s.angle)
return s.primitive.Distance(rotated_p)
}
type scaledSDF struct {
type ScaledSDF struct {
primitive SDF
scale float64
}
func (s scaledSDF) Distance(p Vector3) float64 {
return s.primitive.Distance(p.Scale(1/s.scale)) * s.scale
func (s ScaledSDF) Distance(p Vector3) (float64, Color) {
dist, color := s.primitive.Distance(p.Scale(1 / s.scale))
return dist * s.scale, color
}
type infiniteRep struct {
type RepeatSDF struct {
primitive SDF
cellSize Vector3
}
// TODO
// func (s infiniteRep) Distance(p Vector3) float64 {
// x, y, z := p.Unpack()
// sx, sy, sz := s.cellSize.Unpack()
// }
// Sphere
type Sphere struct {
center Vector3
radius float64
func (s RepeatSDF) Distance(p Vector3) (float64, Color) {
x, y, z := p.Unpack()
sx, sy, sz := s.cellSize.Unpack()
round := math.RoundToEven
nearest_cell := Vector3{sx * round(x/sx), sy * round(y/sy), sz * round(z/sz)}
return s.primitive.Distance(p.Sub(nearest_cell))
}
func (s Sphere) Distance(p Vector3) float64 {
return p.Sub(s.center).Length()
type UnionSDF struct {
primitive1 SDF
primitive2 SDF
}
func (s UnionSDF) Distance(p Vector3) (float64, Color) {
d1, color1 := s.primitive1.Distance(p)
d2, color2 := s.primitive2.Distance(p)
d := math.Min(d1, d2)
color := color1
if d2 < d1 {
color = color2
}
return d, color
}
type SubstractionSDF struct {
primitive1 SDF
primitive2 SDF
}
func (s SubstractionSDF) Distance(p Vector3) (float64, Color) {
d1, color1 := s.primitive1.Distance(p)
d2, _ := s.primitive2.Distance(p)
d := math.Max(-d1, d2)
return d, color1
}
type IntersectionSDF struct {
primitive1 SDF
primitive2 SDF
}
func (s IntersectionSDF) Distance(p Vector3) (float64, Color) {
d1, color1 := s.primitive1.Distance(p)
d2, color2 := s.primitive2.Distance(p)
c1 := color1.GetColor(p)
c2 := color2.GetColor(p)
d := math.Max(d1, d2)
color := c1.Add(c2).Scale(0.5)
return d, color
}
type SmoothUnionSDF struct {
primitive1 SDF
primitive2 SDF
k float64
}
func (s SmoothUnionSDF) Distance(p Vector3) (float64, Color) {
k := 4 * s.k
d1, color1 := s.primitive1.Distance(p)
d2, color2 := s.primitive2.Distance(p)
c1 := color1.GetColor(p)
c2 := color2.GetColor(p)
h := math.Max(k-math.Abs(d1-d2), 0.0)
d := math.Min(d1, d2) - h*h*0.25/k
t := SmoothStep(d2-d1, -k, k)
color := Mix(c1, c2, t)
return d, color
}
type SmoothSubstractionSDF struct {
primitive1 SDF
primitive2 SDF
k float64
}
func (s SmoothSubstractionSDF) Distance(p Vector3) (float64, Color) {
k := 4 * s.k
d1, color1 := s.primitive1.Distance(p)
d2, color2 := s.primitive2.Distance(p)
c1 := color1.GetColor(p)
c2 := color2.GetColor(p)
h := math.Max(k-math.Abs(-d1-d2), 0.0)
d := math.Max(-d1, d2) + h*h*0.25/k
t := SmoothStep(d2-d1, -k, k)
color := Mix(c1, c2, t)
return d, color
}
type SmoothIntersectionSDF struct {
primitive1 SDF
primitive2 SDF
k float64
}
func (s SmoothIntersectionSDF) Distance(p Vector3) (float64, Color) {
k := 4 * s.k
d1, color1 := s.primitive1.Distance(p)
d2, color2 := s.primitive2.Distance(p)
c1 := color1.GetColor(p)
c2 := color2.GetColor(p)
d := math.Max(k-math.Abs(d1-d2), 0.0)
t := SmoothStep(d2-d1, -k, k)
color := Mix(c1, c2, t)
return d, color
}

41
vec3.go
View file

@ -8,6 +8,10 @@ type Vector3 struct {
X, Y, Z float64
}
func (u Vector3) GetColor(p Vector3) Vector3 {
return u
}
func (u Vector3) Add(v Vector3) Vector3 {
return Vector3{u.X + v.X, u.Y + v.Y, u.Z + v.Z}
}
@ -49,6 +53,19 @@ func (u Vector3) Round() Vector3 {
return Vector3{round(u.X), round(u.Y), round(u.Z)}
}
func (u Vector3) Abs() Vector3 {
abs := math.Abs
return Vector3{abs(u.X), abs(u.Y), abs(u.Z)}
}
func (u Vector3) Max(x float64) Vector3 {
return Vector3{max(u.X, x), max(u.Y, x), max(u.Z, x)}
}
func (u Vector3) Min(x float64) Vector3 {
return Vector3{min(u.X, x), min(u.Y, x), min(u.Z, x)}
}
// i incident, n normal. Both vector should be normalized
func Reflect(i Vector3, n Vector3) Vector3 {
y := i.Dot(n)
@ -58,7 +75,7 @@ func Reflect(i Vector3, n Vector3) Vector3 {
// Todo : Refract
// Rodrigues' rotation formula. rotVector should be normalized
func rotate(u Vector3, rotVector Vector3, angle float64) Vector3 {
func Rotate(u Vector3, rotVector Vector3, angle float64) Vector3 {
cos, sin := math.Cos(angle), math.Sin(angle)
vec1 := u.Scale(cos)
vec2 := rotVector.Cross(u).Scale(sin)
@ -66,6 +83,28 @@ func rotate(u Vector3, rotVector Vector3, angle float64) Vector3 {
return vec1.Add(vec2).Add(vec3)
}
func Mix(u Vector3, v Vector3, k float64) Vector3 {
l := (1 - k)
return Vector3{u.X*l + v.X*k, u.Y*l + v.Y*k, u.Z*l + v.Z*k}
}
func (v Vector3) Unpack() (float64, float64, float64) {
return v.X, v.Y, v.Z
}
// Others maths thingies
func Clamp(x float64, a float64, b float64) float64 {
return min(max(x, a), b)
}
func (v Vector3) Clamp(a float64, b float64) Vector3 {
x, y, z := v.Unpack()
x, y, z = Clamp(x, a, b), Clamp(y, a, b), Clamp(z, a, b)
return Vector3{x, y, z}
}
func SmoothStep(x float64, a float64, b float64) float64 {
x = Clamp((x-a)/(b-a), 0, 1)
return x * x * (3.0 - 2.0*x)
}