168 lines
3.8 KiB
Go
168 lines
3.8 KiB
Go
package main
|
|
|
|
import "math"
|
|
|
|
const EPS = 0.001
|
|
|
|
type SDF interface {
|
|
Distance(Vector3) (float64, Color)
|
|
}
|
|
|
|
func DistanceOnly(sdf SDF, p Vector3) float64 {
|
|
dist, _ := sdf.Distance(p)
|
|
return dist
|
|
}
|
|
|
|
func Gradient(sdf SDF, p Vector3, eps float64) Vector3 {
|
|
dx := (DistanceOnly(sdf, p.Add(Vector3{X: eps})) - DistanceOnly(sdf, p.Add(Vector3{X: -eps}))) / (2 * eps)
|
|
dy := (DistanceOnly(sdf, p.Add(Vector3{Y: eps})) - DistanceOnly(sdf, p.Add(Vector3{Y: -eps}))) / (2 * eps)
|
|
dz := (DistanceOnly(sdf, p.Add(Vector3{Z: eps})) - DistanceOnly(sdf, p.Add(Vector3{Z: -eps}))) / (2 * eps)
|
|
return Vector3{X: dx, Y: dy, Z: dz}
|
|
}
|
|
|
|
// Some transformations see https://iquilezles.org/articles/distfunctions/
|
|
|
|
type TranslatedSDF struct {
|
|
primitive SDF
|
|
translate Vector3
|
|
}
|
|
|
|
func (s TranslatedSDF) Distance(p Vector3) (float64, Color) {
|
|
return s.primitive.Distance(p.Sub(s.translate))
|
|
}
|
|
|
|
type RotatedSDF struct {
|
|
primitive SDF
|
|
rotVector Vector3
|
|
angle float64
|
|
}
|
|
|
|
func (s RotatedSDF) Distance(p Vector3) (float64, Color) {
|
|
rotated_p := Rotate(p, s.rotVector, s.angle)
|
|
return s.primitive.Distance(rotated_p)
|
|
}
|
|
|
|
type ScaledSDF struct {
|
|
primitive SDF
|
|
scale float64
|
|
}
|
|
|
|
func (s ScaledSDF) Distance(p Vector3) (float64, Color) {
|
|
dist, color := s.primitive.Distance(p.Scale(1 / s.scale))
|
|
return dist * s.scale, color
|
|
}
|
|
|
|
type RepeatSDF struct {
|
|
primitive SDF
|
|
cellSize Vector3
|
|
}
|
|
|
|
func (s RepeatSDF) Distance(p Vector3) (float64, Color) {
|
|
x, y, z := p.Unpack()
|
|
sx, sy, sz := s.cellSize.Unpack()
|
|
round := math.RoundToEven
|
|
nearest_cell := Vector3{sx * round(x/sx), sy * round(y/sy), sz * round(z/sz)}
|
|
return s.primitive.Distance(p.Sub(nearest_cell))
|
|
}
|
|
|
|
type UnionSDF struct {
|
|
primitive1 SDF
|
|
primitive2 SDF
|
|
}
|
|
|
|
func (s UnionSDF) Distance(p Vector3) (float64, Color) {
|
|
d1, color1 := s.primitive1.Distance(p)
|
|
d2, color2 := s.primitive2.Distance(p)
|
|
d := math.Min(d1, d2)
|
|
|
|
color := color1
|
|
if d2 < d1 {
|
|
color = color2
|
|
}
|
|
return d, color
|
|
}
|
|
|
|
type SubstractionSDF struct {
|
|
primitive1 SDF
|
|
primitive2 SDF
|
|
}
|
|
|
|
func (s SubstractionSDF) Distance(p Vector3) (float64, Color) {
|
|
d1, color1 := s.primitive1.Distance(p)
|
|
d2, _ := s.primitive2.Distance(p)
|
|
|
|
d := math.Max(-d1, d2)
|
|
return d, color1
|
|
}
|
|
|
|
type IntersectionSDF struct {
|
|
primitive1 SDF
|
|
primitive2 SDF
|
|
}
|
|
|
|
func (s IntersectionSDF) Distance(p Vector3) (float64, Color) {
|
|
|
|
d1, color1 := s.primitive1.Distance(p)
|
|
d2, color2 := s.primitive2.Distance(p)
|
|
c1 := color1.GetColor(p)
|
|
c2 := color2.GetColor(p)
|
|
d := math.Max(d1, d2)
|
|
color := c1.Add(c2).Scale(0.5)
|
|
return d, color
|
|
}
|
|
|
|
type SmoothUnionSDF struct {
|
|
primitive1 SDF
|
|
primitive2 SDF
|
|
k float64
|
|
}
|
|
|
|
func (s SmoothUnionSDF) Distance(p Vector3) (float64, Color) {
|
|
k := 4 * s.k
|
|
d1, color1 := s.primitive1.Distance(p)
|
|
d2, color2 := s.primitive2.Distance(p)
|
|
c1 := color1.GetColor(p)
|
|
c2 := color2.GetColor(p)
|
|
h := math.Max(k-math.Abs(d1-d2), 0.0)
|
|
d := math.Min(d1, d2) - h*h*0.25/k
|
|
t := SmoothStep(d2-d1, -k, k)
|
|
color := Mix(c1, c2, t)
|
|
return d, color
|
|
}
|
|
|
|
type SmoothSubstractionSDF struct {
|
|
primitive1 SDF
|
|
primitive2 SDF
|
|
k float64
|
|
}
|
|
|
|
func (s SmoothSubstractionSDF) Distance(p Vector3) (float64, Color) {
|
|
k := 4 * s.k
|
|
d1, color1 := s.primitive1.Distance(p)
|
|
d2, color2 := s.primitive2.Distance(p)
|
|
c1 := color1.GetColor(p)
|
|
c2 := color2.GetColor(p)
|
|
h := math.Max(k-math.Abs(-d1-d2), 0.0)
|
|
d := math.Max(-d1, d2) + h*h*0.25/k
|
|
t := SmoothStep(d2-d1, -k, k)
|
|
color := Mix(c1, c2, t)
|
|
return d, color
|
|
}
|
|
|
|
type SmoothIntersectionSDF struct {
|
|
primitive1 SDF
|
|
primitive2 SDF
|
|
k float64
|
|
}
|
|
|
|
func (s SmoothIntersectionSDF) Distance(p Vector3) (float64, Color) {
|
|
k := 4 * s.k
|
|
d1, color1 := s.primitive1.Distance(p)
|
|
d2, color2 := s.primitive2.Distance(p)
|
|
c1 := color1.GetColor(p)
|
|
c2 := color2.GetColor(p)
|
|
d := math.Max(k-math.Abs(d1-d2), 0.0)
|
|
t := SmoothStep(d2-d1, -k, k)
|
|
color := Mix(c1, c2, t)
|
|
return d, color
|
|
}
|