Hopefully before really raymarching testing
This commit is contained in:
parent
d2f0abff6a
commit
6ed5b21890
5 changed files with 206 additions and 27 deletions
5
color.go
Normal file
5
color.go
Normal file
|
|
@ -0,0 +1,5 @@
|
|||
package main
|
||||
|
||||
type Color interface {
|
||||
GetColor(Vector3) Vector3
|
||||
}
|
||||
34
primitives_sdf.go
Normal file
34
primitives_sdf.go
Normal file
|
|
@ -0,0 +1,34 @@
|
|||
package main
|
||||
|
||||
// Sphere
|
||||
type Sphere struct {
|
||||
center Vector3
|
||||
radius float64
|
||||
color Color
|
||||
}
|
||||
|
||||
func (s Sphere) Distance(p Vector3) (float64, Color) {
|
||||
return p.Sub(s.center).Length(), s.color
|
||||
}
|
||||
|
||||
// Box
|
||||
type Box struct {
|
||||
center Vector3
|
||||
dimensions Vector3
|
||||
color Color
|
||||
}
|
||||
|
||||
func (s Box) Distance(p Vector3) (float64, Color) {
|
||||
q := p.Sub(s.center).Abs().Sub(s.dimensions)
|
||||
return q.Max(0.0).Length() + min(max(q.X, max(q.Y, q.Z)), 0.0), s.color
|
||||
}
|
||||
|
||||
type Plane struct {
|
||||
normal Vector3
|
||||
height float64
|
||||
color Color
|
||||
}
|
||||
|
||||
func (s Plane) Distance(p Vector3) (float64, Color) {
|
||||
return p.Dot(s.normal) + s.height, s.color
|
||||
}
|
||||
153
sdf.go
153
sdf.go
|
|
@ -1,67 +1,168 @@
|
|||
package main
|
||||
|
||||
import "math"
|
||||
|
||||
const EPS = 0.001
|
||||
|
||||
type SDF interface {
|
||||
Distance(Vector3) float64
|
||||
Distance(Vector3) (float64, Color)
|
||||
}
|
||||
|
||||
func DistanceOnly(sdf SDF, p Vector3) float64 {
|
||||
dist, _ := sdf.Distance(p)
|
||||
return dist
|
||||
}
|
||||
|
||||
func Gradient(sdf SDF, p Vector3, eps float64) Vector3 {
|
||||
dx := (sdf.Distance(p.Add(Vector3{X: eps})) - sdf.Distance(p.Add(Vector3{X: -eps}))) / (2 * eps)
|
||||
dy := (sdf.Distance(p.Add(Vector3{Y: eps})) - sdf.Distance(p.Add(Vector3{Y: -eps}))) / (2 * eps)
|
||||
dz := (sdf.Distance(p.Add(Vector3{Z: eps})) - sdf.Distance(p.Add(Vector3{Z: -eps}))) / (2 * eps)
|
||||
dx := (DistanceOnly(sdf, p.Add(Vector3{X: eps})) - DistanceOnly(sdf, p.Add(Vector3{X: -eps}))) / (2 * eps)
|
||||
dy := (DistanceOnly(sdf, p.Add(Vector3{Y: eps})) - DistanceOnly(sdf, p.Add(Vector3{Y: -eps}))) / (2 * eps)
|
||||
dz := (DistanceOnly(sdf, p.Add(Vector3{Z: eps})) - DistanceOnly(sdf, p.Add(Vector3{Z: -eps}))) / (2 * eps)
|
||||
return Vector3{X: dx, Y: dy, Z: dz}
|
||||
}
|
||||
|
||||
// Some transformations see https://iquilezles.org/articles/distfunctions/
|
||||
|
||||
type translatedSDF struct {
|
||||
type TranslatedSDF struct {
|
||||
primitive SDF
|
||||
translate Vector3
|
||||
}
|
||||
|
||||
func (s translatedSDF) Distance(p Vector3) float64 {
|
||||
func (s TranslatedSDF) Distance(p Vector3) (float64, Color) {
|
||||
return s.primitive.Distance(p.Sub(s.translate))
|
||||
}
|
||||
|
||||
type rotatedSDF struct {
|
||||
type RotatedSDF struct {
|
||||
primitive SDF
|
||||
rotVector Vector3
|
||||
angle float64
|
||||
}
|
||||
|
||||
func (s rotatedSDF) Distance(p Vector3) float64 {
|
||||
rotated_p := rotate(p, s.rotVector, s.angle)
|
||||
func (s RotatedSDF) Distance(p Vector3) (float64, Color) {
|
||||
rotated_p := Rotate(p, s.rotVector, s.angle)
|
||||
return s.primitive.Distance(rotated_p)
|
||||
}
|
||||
|
||||
type scaledSDF struct {
|
||||
type ScaledSDF struct {
|
||||
primitive SDF
|
||||
scale float64
|
||||
}
|
||||
|
||||
func (s scaledSDF) Distance(p Vector3) float64 {
|
||||
return s.primitive.Distance(p.Scale(1/s.scale)) * s.scale
|
||||
func (s ScaledSDF) Distance(p Vector3) (float64, Color) {
|
||||
dist, color := s.primitive.Distance(p.Scale(1 / s.scale))
|
||||
return dist * s.scale, color
|
||||
}
|
||||
|
||||
type infiniteRep struct {
|
||||
type RepeatSDF struct {
|
||||
primitive SDF
|
||||
cellSize Vector3
|
||||
}
|
||||
|
||||
// TODO
|
||||
// func (s infiniteRep) Distance(p Vector3) float64 {
|
||||
// x, y, z := p.Unpack()
|
||||
// sx, sy, sz := s.cellSize.Unpack()
|
||||
// }
|
||||
|
||||
// Sphere
|
||||
|
||||
type Sphere struct {
|
||||
center Vector3
|
||||
radius float64
|
||||
func (s RepeatSDF) Distance(p Vector3) (float64, Color) {
|
||||
x, y, z := p.Unpack()
|
||||
sx, sy, sz := s.cellSize.Unpack()
|
||||
round := math.RoundToEven
|
||||
nearest_cell := Vector3{sx * round(x/sx), sy * round(y/sy), sz * round(z/sz)}
|
||||
return s.primitive.Distance(p.Sub(nearest_cell))
|
||||
}
|
||||
|
||||
func (s Sphere) Distance(p Vector3) float64 {
|
||||
return p.Sub(s.center).Length()
|
||||
type UnionSDF struct {
|
||||
primitive1 SDF
|
||||
primitive2 SDF
|
||||
}
|
||||
|
||||
func (s UnionSDF) Distance(p Vector3) (float64, Color) {
|
||||
d1, color1 := s.primitive1.Distance(p)
|
||||
d2, color2 := s.primitive2.Distance(p)
|
||||
d := math.Min(d1, d2)
|
||||
|
||||
color := color1
|
||||
if d2 < d1 {
|
||||
color = color2
|
||||
}
|
||||
return d, color
|
||||
}
|
||||
|
||||
type SubstractionSDF struct {
|
||||
primitive1 SDF
|
||||
primitive2 SDF
|
||||
}
|
||||
|
||||
func (s SubstractionSDF) Distance(p Vector3) (float64, Color) {
|
||||
d1, color1 := s.primitive1.Distance(p)
|
||||
d2, _ := s.primitive2.Distance(p)
|
||||
|
||||
d := math.Max(-d1, d2)
|
||||
return d, color1
|
||||
}
|
||||
|
||||
type IntersectionSDF struct {
|
||||
primitive1 SDF
|
||||
primitive2 SDF
|
||||
}
|
||||
|
||||
func (s IntersectionSDF) Distance(p Vector3) (float64, Color) {
|
||||
|
||||
d1, color1 := s.primitive1.Distance(p)
|
||||
d2, color2 := s.primitive2.Distance(p)
|
||||
c1 := color1.GetColor(p)
|
||||
c2 := color2.GetColor(p)
|
||||
d := math.Max(d1, d2)
|
||||
color := c1.Add(c2).Scale(0.5)
|
||||
return d, color
|
||||
}
|
||||
|
||||
type SmoothUnionSDF struct {
|
||||
primitive1 SDF
|
||||
primitive2 SDF
|
||||
k float64
|
||||
}
|
||||
|
||||
func (s SmoothUnionSDF) Distance(p Vector3) (float64, Color) {
|
||||
k := 4 * s.k
|
||||
d1, color1 := s.primitive1.Distance(p)
|
||||
d2, color2 := s.primitive2.Distance(p)
|
||||
c1 := color1.GetColor(p)
|
||||
c2 := color2.GetColor(p)
|
||||
h := math.Max(k-math.Abs(d1-d2), 0.0)
|
||||
d := math.Min(d1, d2) - h*h*0.25/k
|
||||
t := SmoothStep(d2-d1, -k, k)
|
||||
color := Mix(c1, c2, t)
|
||||
return d, color
|
||||
}
|
||||
|
||||
type SmoothSubstractionSDF struct {
|
||||
primitive1 SDF
|
||||
primitive2 SDF
|
||||
k float64
|
||||
}
|
||||
|
||||
func (s SmoothSubstractionSDF) Distance(p Vector3) (float64, Color) {
|
||||
k := 4 * s.k
|
||||
d1, color1 := s.primitive1.Distance(p)
|
||||
d2, color2 := s.primitive2.Distance(p)
|
||||
c1 := color1.GetColor(p)
|
||||
c2 := color2.GetColor(p)
|
||||
h := math.Max(k-math.Abs(-d1-d2), 0.0)
|
||||
d := math.Max(-d1, d2) + h*h*0.25/k
|
||||
t := SmoothStep(d2-d1, -k, k)
|
||||
color := Mix(c1, c2, t)
|
||||
return d, color
|
||||
}
|
||||
|
||||
type SmoothIntersectionSDF struct {
|
||||
primitive1 SDF
|
||||
primitive2 SDF
|
||||
k float64
|
||||
}
|
||||
|
||||
func (s SmoothIntersectionSDF) Distance(p Vector3) (float64, Color) {
|
||||
k := 4 * s.k
|
||||
d1, color1 := s.primitive1.Distance(p)
|
||||
d2, color2 := s.primitive2.Distance(p)
|
||||
c1 := color1.GetColor(p)
|
||||
c2 := color2.GetColor(p)
|
||||
d := math.Max(k-math.Abs(d1-d2), 0.0)
|
||||
t := SmoothStep(d2-d1, -k, k)
|
||||
color := Mix(c1, c2, t)
|
||||
return d, color
|
||||
}
|
||||
|
|
|
|||
41
vec3.go
41
vec3.go
|
|
@ -8,6 +8,10 @@ type Vector3 struct {
|
|||
X, Y, Z float64
|
||||
}
|
||||
|
||||
func (u Vector3) GetColor(p Vector3) Vector3 {
|
||||
return u
|
||||
}
|
||||
|
||||
func (u Vector3) Add(v Vector3) Vector3 {
|
||||
return Vector3{u.X + v.X, u.Y + v.Y, u.Z + v.Z}
|
||||
}
|
||||
|
|
@ -49,6 +53,19 @@ func (u Vector3) Round() Vector3 {
|
|||
return Vector3{round(u.X), round(u.Y), round(u.Z)}
|
||||
}
|
||||
|
||||
func (u Vector3) Abs() Vector3 {
|
||||
abs := math.Abs
|
||||
return Vector3{abs(u.X), abs(u.Y), abs(u.Z)}
|
||||
}
|
||||
|
||||
func (u Vector3) Max(x float64) Vector3 {
|
||||
return Vector3{max(u.X, x), max(u.Y, x), max(u.Z, x)}
|
||||
}
|
||||
|
||||
func (u Vector3) Min(x float64) Vector3 {
|
||||
return Vector3{min(u.X, x), min(u.Y, x), min(u.Z, x)}
|
||||
}
|
||||
|
||||
// i incident, n normal. Both vector should be normalized
|
||||
func Reflect(i Vector3, n Vector3) Vector3 {
|
||||
y := i.Dot(n)
|
||||
|
|
@ -58,7 +75,7 @@ func Reflect(i Vector3, n Vector3) Vector3 {
|
|||
// Todo : Refract
|
||||
|
||||
// Rodrigues' rotation formula. rotVector should be normalized
|
||||
func rotate(u Vector3, rotVector Vector3, angle float64) Vector3 {
|
||||
func Rotate(u Vector3, rotVector Vector3, angle float64) Vector3 {
|
||||
cos, sin := math.Cos(angle), math.Sin(angle)
|
||||
vec1 := u.Scale(cos)
|
||||
vec2 := rotVector.Cross(u).Scale(sin)
|
||||
|
|
@ -66,6 +83,28 @@ func rotate(u Vector3, rotVector Vector3, angle float64) Vector3 {
|
|||
return vec1.Add(vec2).Add(vec3)
|
||||
}
|
||||
|
||||
func Mix(u Vector3, v Vector3, k float64) Vector3 {
|
||||
l := (1 - k)
|
||||
return Vector3{u.X*l + v.X*k, u.Y*l + v.Y*k, u.Z*l + v.Z*k}
|
||||
}
|
||||
|
||||
func (v Vector3) Unpack() (float64, float64, float64) {
|
||||
return v.X, v.Y, v.Z
|
||||
}
|
||||
|
||||
// Others maths thingies
|
||||
|
||||
func Clamp(x float64, a float64, b float64) float64 {
|
||||
return min(max(x, a), b)
|
||||
}
|
||||
|
||||
func (v Vector3) Clamp(a float64, b float64) Vector3 {
|
||||
x, y, z := v.Unpack()
|
||||
x, y, z = Clamp(x, a, b), Clamp(y, a, b), Clamp(z, a, b)
|
||||
return Vector3{x, y, z}
|
||||
}
|
||||
|
||||
func SmoothStep(x float64, a float64, b float64) float64 {
|
||||
x = Clamp((x-a)/(b-a), 0, 1)
|
||||
return x * x * (3.0 - 2.0*x)
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue